

DIVA software and the

♥ @CharlesTroupin, A. Barth, S. Watelet & J.-M. Beckers University of Liège, GeoHydrodynamics and Environment Research

EUDAT Conference, Porto (Portugal), 22-25 January 2018

sdn-userdesk@seadatanet.org - www.seadatanet.org

Can you guess the temperature at the "?"

Spatial interpolation: Why is it needed?

Ccean observation is expensive and complex

Credit: www.socib.es

"A measurement not made is a measurement lost forever"

"Collect once, use many times"

Can you guess the temperature at the "?"

$$\frac{14.4 + 16.1}{2} = 15.25^{\circ} \text{C} \qquad ??$$

Can you guess the temperature at the "?"

6 reasons why spatial interpolation is not so easy

Measurements not collected at the same time

What we measure is not always what we intend to analyse

Example: I want the mean annual temperature off Porto but ships are only at sea when the weather is good

A lot of observations, but not everywhere

Reed to interpolate at many locations

Land acts as a physical barrier

A lot of processes taking place...

IMAGE CONCEPT: JOHN R. DELANEY

W UNIVERSITY of WASHINGTON

How do we do it?

Minimisation of a cost function taking into account:

- 1 Closeness to the observations
- 2 Regularity/smoothness of the solution

$$\begin{split} J[\varphi] &= \sum_{i=1}^{N} \mu_i \left[d_i - \varphi(x_i, y_i) \right]^2 \\ &+ \int_D \left(\boldsymbol{\nabla} \boldsymbol{\nabla} \varphi : \boldsymbol{\nabla} \boldsymbol{\nabla} \varphi + \alpha_1 \boldsymbol{\nabla} \varphi \cdot \boldsymbol{\nabla} \varphi + \alpha_0 \varphi^2 \right) \mathsf{d} D, \end{split}$$

solved by a finite-element technique

DIVAnd: generalised, n-dimensional interpolation

2013: 🔾 🖤 or MATLAB 2016: julia

faster, better, stronger

divand-1.0: *n*-dimensional variational data analysis for ocean observations A. Barth^{1,*}, J.-M. Beckers¹, C. Troupin², A. Alvera-Azeárate¹, and L. Vandenbukke^{3,4} ¹GHER, University of Liège, Liège, Belgium ³Jesandor Jalaio Srl, Sat Valeni, Com. Salatricu, Jud. Arges, Romania ⁴CIIMAR, University of Porto, Porto, Portugal ^{*} Invited contribution by A. Barth, recipient of the EGU Arme Richter Award for Outstanding Young Scientists 2010. Correspondence to: A. Barth («barth@ulg.ac.be) Received: 7 June 2013 – Published in Geosci. Model Dev. Discuss.: 23 July 2013 Revised: 18 October 2013 – Accepted: 12 December 2013 – Published: 29 January 2014

bhttps://www.geosci-model-dev.net/7/225/2014/gmd-7-225-2014.pdf
 https://github.com/gher-ulg/divand.jl

DIVAnd: generalised, n-dimensional interpolation

$$\begin{split} & K^{n,m}(r) \\ &= c^{n,m} \frac{(2\pi)^{-\frac{n}{2}}}{2(1-m)} r^{\frac{2-n}{2}} \int_0^\infty \mathcal{J}_{\frac{n-2}{2}}(kr) k^{\frac{n-2}{2}} \frac{d}{dk} \left(\frac{1}{(1+k^2)^{m-1}}\right) dk \\ &= c^{n,m} \frac{(2\pi)^{-\frac{n}{2}}}{2(m-1)} r^{\frac{4-n}{2}} \int_0^\infty \mathcal{J}_{\frac{n-4}{2}}(kr) k^{\frac{n-4}{2}} \frac{k}{(1+k^2)^{m-1}} dk \\ &= \frac{1}{4\pi(m-1)} \frac{c^{n,m}}{c^{n-2,m-1}} K^{n-2,m-1}(r) \\ & n \text{ is the dimension} \\ & m \text{ is the highest derivative} \\ & K^{n,m} \text{ is the Kernel} \end{split}$$

 $J_{
u}(r)$ is the Bessel function of first kind or order u

Problem

Representativeness error

3 Many observations

4 Interpolate at many locations

6 Currents

Solution in DIVA

Regularity constrain in cost function

Numerical cost (almost) independent on the number of data points

Finite-element solver

Finite-element solver

Advection included in the cost function

Rotebooks: user-interface

- 1 Documentation, including equations and export to pdf
- 2 Code fragments for different steps of the interpolation
- 3 Figures illustrating the data or intermediate results

http://www.nature.com/news/
interactive-notebooks-sharing-the-code-1.16261

Provide the jupyter-notebooks along with the data product (interpolation)

Easy to share: http://nbviewer.jupyter.org/, http://github.com/

Make easier the reproducibility and peer-review

Why do we need **V**irtual Research Environments?

Storage and inversion of huge matrices

Typical case:

Horizontal grid: 500×500 Vertical levels: 50 depth levels Time periods: 20

People connect, access the data, and work!

DOWNLOAD SOFTWARE

Download the freely available SexDDatAtectools for munagement of data file formats (NEMG, OCTOPUS), generation VML, medatat descriptors, (NIADD), analysis and visualisation of data (ODV), and interpolation and virational analysis of data sets (DIVA), connection of data centres to ScaDataNet portal (Download Manager), sub-sampling margitotion (gill EnddardBetas)

Installed/deployed once, used many times

Installing is sometimes much harder than running the code...

DIVAnd in the VRE with jupyterhub

Management of multiple instances of the single-user Jupyter notebook server

Files Running Clusters		
Select items to perform actions on them. Upload N	w • 0	
🗇 🔹 🖬 / Projects / SeaDataCloud / Julia Name 🛧 Last Mo	tified 🕈	
C)	seconds ago	
C 🗅 data a mor	a month ago	
C test 4 mont	4 months ago	
D & D/VAnd+in+Jupyter+Notebook: joynb 5 mont	5 months ago	
C / DIVAnd_EUDAT_example_pub.lpynb 5 mon	hs ago	

https://github.com/jupyterhub/jupyterhub
Demo available at https://hub-test.oceanbrowser.net/
(deployed at CINECA via Docker)

Authentication

Inputs: CDI data and user data

Results of the interpolation

Outputs: data products, climatologies, gridded fields

Spatial interpolation is a frequent but not trivial operation in ocean sciences

- Spatial interpolation is a frequent but not trivial operation in ocean sciences
- ✓ Specific tools (DIVA, DIVAnd) have been designed for data interpolation

- Spatial interpolation is a frequent but not trivial operation in ocean sciences
 Specific tools (DIVA, DIVAnd) have been designed for data interpolation
- With a VRE, more users can access more easily SeaDataCloud resources (metadata, data & tools)

Tools	Leaflet DIVA DIVAnd
Map layers	EMODnet Bathymetry Earth At Night 2012
MedSea observations	Temperature and salinity observation collection V1.1

