

Exploring the Lorenz System The Jupyter Notebook C JUpyter Welcome to the This Notebook Bener we WARNING Continety on this sen his is one of the classic systems in non-linear differential equations. It exhi-omplex behaviors as the parameters (σ , β , ρ) are varied, including what an olutions. The system was originally developed as a simplified mathematica mospheric convection in 1963. he Jupyter Notebook is an open-source web application that allow To use jupyter notebooks both as a **user guide** and you to create and share documents that contain live code, equation visualizations and explanatory text. Uses include: data cleaning an Your server is hosted that **Run some Python •** To on the code belies: 1. Citics on the citi to an 2. Press SITET+EXTER A full tuboris for using the Laperts matrix as pol-Laperts matrix as po transformation, numerical simulation, statistical modeling, machine as a **user interface** to describes the different steps to learning and much more. generate research products. Spark </>

What do we want to do? "Interactive notebooks: Sharing the code", Nature (2014) http://www.nature.com/ news/interactive-notebooks-sharing-the-code-1.16261

a possible useful component in Virtual Research Environments

Why do we use Jupyter?

- 1. Open source...
- 2. Many programming languages...
- 3. Easy installation...
- 4. A nice solution to deploy on a cloud:

Tool name	R-Markdown	Jupyter	Beaker
O https://github.com/	/rstudio/rmarkdown	/jupyter/notebook	/twosigma/beakerx
Languages	R, Python, SQL, Bash, Rcpp, Stan, JavaScript	Julia, Python, R, Scala, Bash, Octave, Rubi, Fortran, PHP,	Julia, Python, R, Javascript, C++, Tor Scala, Bash, Octave, Fortran,
Export formats	HTML, PDF, MS Word, Beamer, HTML5 slides,	PDF, LaTeX, HMTL, Markdown, reST	Beaker format
Cloud deployment	-	JupyterHub	Beaker Lab (discontinu

A few more words about Jupyterhub (4)

spawns Multi-user Hub which proxies

server (https://github.com/jupyterhub/jupyterhub).

Running notebooks		Logout Control Pa	Inel
Files Running Clusters	New notebooks with available	*	
Select items to perform actions on them.	language kernels	Upload New ·	• 2
0 -		Notebook:	ed
		Python 3	90
Itesting_DIVAnd.ipynb		Other:	jo
divand_simple_example.png		Text File	JO
· · · · · · · · · · · · · · · · · · ·		Folder	
Available files		Terminal	

and directories

Figure 6: Test instance of jupyterhub deployed for the SeaDataCloud VRE.

Spawner: responsible for the start of the computer environment for the user, either directly on the server or on a cluster. Several spawners are available, among them DockerSpawner, which enables JupyterHub to spawn single user notebook servers in Docker containers (https://github.com/jupyterhub/dockerspawner).

3 steps into 1

With DIVA

Read the doc

Compile and run the code

Document the execution: parameters, configuration, ...

Oceanography Data analysis Reproducibility SeaDataCloud ODIP Virtual Research Environments

Python Julia Jupyter

 $(\mathbf{0})$

Figure 5: Jupyter (http://jupyter.org/) Web application for the creation and sharing of

- notebook-type documents. Evolved from IPython, a command shell for interactive computing (2001).
- ✓ More than 40 language kernels available
- Can be used as a multi-user server (jupyterhub) \rightarrow avoid installation steps on several users' machine

as the others as the others as some of the others JupyterHub

manages \rangle multiple instances of the single-user Jupyter notebook

with **DIVAnd**

Run the notebook!

Anatomy of a notebook

Notebooks contain:

- 1. Text cell to document the code
- 2. Cell codes that can be exectuted piece by piece
- 3. Results from the code execution
- 4. Figures or animations

Figure 7: Examples of notebook cells.

Next steps

✓ Use the files produced by webODV as an input for DIVAnd ✓ Build a RESTful API to make easier the integration into the VRE \checkmark Publish the notebooks along with the data and the products

Acknowledgements

The work presented in this poster has been developed in the frame of SeaDataCloud–Further developing the pan-European infrastructure for marine and ocean data management, Project ID 730960 and **ODIP 2**–*Extending the Ocean Data Interoperability Platform*, Project ID: 654310.

find the second s