pydiva2d: a python interface to the DIVA interpolation software

Spatial interpolation

Oceanography

Data analysis Finite-element method python SeaDataCloud

What is DIVA?

A scientific tool designed to efficiently interpolate oceanographic observations. The finite-element technique employed ensures that we can work with very big data sets. The code itself consists of bash scripts that call a set of Fortran executables.

3 reasons to use it

- ✓ Free & open
- \checkmark Deal with huge oceanographic datasets (> 1000000 points)
- ✓ Take physical boundaries (coastline, topography) into account

Table 1: How to get DIVA tool?

Zenodo DOI 10.5281/zenodo.836727 https://github.com/gher-ulg/DIVA

Why a python interface?

There are many input files to prepare prior to an analysis with DIVA, so the interface makes things easier for the new users: just select the data files and the analysis parameters, the run the code without worrying about the file names and formats.

Table 2: How to get the module?

Zenodo DOI 10.5281/zenodo.838193 https://github.com/gher-ulg/DivaPythonTools

What's inside the box?

pydiva2d defines *classes* representing the main DIVA objects:

data consisting of geolocalised measurements,

contours representing the physical domain (coastlines),

parameters specifying how the interpolation is performed,

mesh used in the solver

analysis the result produced by the interpolation.

An example in the Black Sea

We interpolate mixed-layer depth values obtained from in situ profiles in the Black Sea. The different steps for the interpolation are as follows: first we load the package and define the DIVA files:

import pydiva2d divadir = "/home/ctroupin/diva-4.7.1/" DivaDirs = pydiva2d.DivaDirectories(divadir) DivaFiles = pydiva2d.Diva2Dfiles(DivaDirs.diva2d) datafile = 'MLD1.dat' coastfile = 'coast.cont paramfile = 'param.par'

Figure 1: Data points representing the Mixed-layer depth (in meters). Some regions are well covered, while others have no measurements.

Load the contours from file contour = pydiva2d.Diva2DContours() contour.read_from(coastfile) # Add to plot contour.add_to_plot(m=m, linewidth=3)

Figure 2: Surface contours created from the bathymetry. They delimit the interpolation domain, on which the finine-element mesh will be In this application there are 28 contours, the main contour being the

Black Sea.

Read mesh files mesh = pydiva2d.Diva2DMesh() mesh = read_from(DivaFiles.mesh, DivaFiles.meshtopo) # Get a description mesh.describe() # Add to plot mesh.add_to_plot(m, linewidth=0.25, color='k')

interpolation. Number of nodes: 4636. Number of interfaces: 10089.

Perform the analysis using the specified files results = pydiva2d.Diva2DResults().make(divadir, datafile= datafile, contourfile= coastfile, paramfile =paramfile) # Add results to plot resultplot = results.add_to_plot(field=' analysis', m=m)

Number of elements: 5360.

values (yellow color) are found in the north-eastern part of the domain,

influenced by the Danube river runoff.

Figure 5: As expected, the error field displays lower values where the data coverage is higher. Note the large error in the Seas of Azov and Marmara.

Using Leaflet library

Thanks to the format-conversion methods available in the pydiva2d, one can easily generate GeoJSON files (http://geojson.org/), directly ingestible in Leaflet.

Leaflet?

Leaflet is a library for mobile-friendly interactive maps (http://leafletjs.com/). It comes with a bunch of plugins to create customized maps with a lot of information as layers.

Temperature in the MedSea

The following figures illustrate the DIVA input and output.

Write contour and mesh to geoJSON contour.to_geojson('medsea-contours.js') mesh.to_geojson('medsea-mesh.js')

Figure 6: Contours and finite-element mesh. Both have the MultiPolygons geometry. Bathymetry from http: //www.emodnet-bathymetry.eu/.

Write data to geoJSON data.to_geojson('medsea-data.js')

Figure 7: Heatmap displaying the data density. As in the Black Sea example, the distribution is heterogeneous. Data source: Mediterranean Sea -Temperature and salinity observation collection V2 doi:10.12770/8c3bd19b-9687-429ca232-48b10478581c

Write field to geoJSON results.to_geojson('medsea-results.js')

Figure 8: Analysis field of The isothers are stored in a FeatureCollection, each feature being a MultiPolygon with the temperature value as a property.

Summary

- ✓ DIVA is a software tool for data interpolation.
- ✓ the module pydiva2d helps with: the manipulation of input files, the generation of figures and the conversion to other formats.
- ✓ Leaflet can be used to represented the DIVA input and outputs using GeoJSON format.

Acknowledgements

The DIVA development has received funding from the European Union Sixth Framework Programme (FP6/2002–2006) under grant agreement no. 026212, SeaDataNet, Seventh Framework Programme (FP7/2007– 2013) under grant agreement no. 283607, SeaDataNet II, SeaDataCloud and EMODnet (MARE/2008/03 - Lot 3 Chemistry - SI2.531432) from the Directorate-General for Maritime Affairs and Fisheries.

