#### Ocean Data Interoperability Platform (ODIP)

**SeaDataCloud VRE – Analysis of potential architecture options** 

8h ODIP Workshop – Galway - Ireland– 2 October 2017

European Union's HORIZON 2020 Framework Programme for Research and Innovation Grant agreement no 654310



#### **Peter Thijsse / Thomas Loubrieu**

On behalf of: T Loubrieu, G Leblan, A. Barth, Charles Troupin, Christine Coatanoan, Merret Buurman, Marco rorro, Nicolas Liampotis, Harsha Vathsavay, Claudio Cacciari, Sebastien Mieruch, Reiner Schlitzer, Giorgio Santinelli, Simon Claus, Mickaël Treguer, Dick M.A. Schaap



#### SeaDataClouds VRE needs to:

- facilitate collaborative and individual research: Using, handling, analysing and processing ocean and marine data into value-added data products which can be integrated, visualised and published using high level visualisation services.
- combine with subsets from other data resources, such as the ingested collections
- Have a high capacity and performance for big data processing and state-of-the-art web visualisation services
- <..>

- Respect privacy of users and differences in data policies. Differentiated users, different access to data and data products.
- be possible to configure virtual work spaces for individuals or groups to work on specific projects, including setting up of dedicated pools of data
- Allow producers to decide whether their outcomes will be shared in the public domain or stay private
- Based on EUDAT's infrastructure based on it B2-... service platforms

#### This is an ambitious challenge

- It needs a solid architecture, ready to be expanded over time
- But: The EUDAT platform is strong and already partly operational
- But: We can learn from existing architectures from other projects

### Architecture analysis

#### **EVER-EST**

- Discover, assess and process both existing and new heterogeneous Earth Science datasets
- Share data, models, algorithms, scientific results within a community or across communities
- Capture, annotate and store the workflows, processes and results from their research activities
- Work together in a real-time environment that facilitates the sharing of expertise, information and data resources
- Ensure the long-term sustainability and preservation of data, models, workflows, tools and services developed by existing communities of practice

#### **EVER-EST**



#### NECTAR/MARVL

- NecTAR (<a href="https://nectar.org.au/">https://nectar.org.au/</a>) is an Australian cloud infrastructure development with on top of that several VRE projects with a specific theme, e.g. MarVL (Marine Virtual Lab):
  - Configure a range of different community coastal/ ocean and wave models, through a user-friendly web application.
  - Discover and assemble ocean observations from IMOS and AODN in a format that is suitable for model evaluation or data assimilation.
  - Helps marine scientists make better use of ocean observations to improve forecasting and planning for marine and coastal environments."

#### NECTAR / AURIN Architecture



#### BlueBridge

- BlueBridge (<a href="http://www.bluebridge-vres.eu/">http://www.bluebridge-vres.eu/</a>) is a service provider offering access to VREs. Key features for a Blue Bridge VRE are:
  - Web-based working environment
  - Tailored to serve the needs of a Community of Practice
  - Expected to provide a Community of Practice with the whole array of commodities needed to accomplish the community's goal(s)
  - Open and flexible
  - Promotes fine-grained controlled sharing of both intermediate and final research results
  - Example tools for working on the lab: R Studio to work on R, Data Miner, Species Data

10

#### BlueBridge



#### Other VRE's observed

- LifeWatch Marine VRE (using Taverna as Workflow manager)
- Ecopotential VRE (related to GEO/GEOSS)

#### Conclusions analysis

- Mostly the same expectations with respect to community building, data sharing, processing and analysis tools
- Authorisation/Authentication layer both in portal layer as well as on top of service layer
- API's for each (processing) service
- Communication standards are key to success
- Front end applications are various: From self created workflows, to VRE virtual labs, to dedicated user interfaces. But all run on same set of services and data.

### SDC VRE: Combining lessons and EUDATs infrastructure (draft)



#### A skeleton: some technical options

- Authentication: Oauth2 protocol (B2ACCESS + Marine-ID)
- Integrated menu: Application in php + Javascript library
- Private file system, sharing: B2DROP (Owncloud/NextCloud)
- Write, execute code: Jupyter notebook
- Predefined processing: OGC/WPS
- Workbenches, ie applications fit for a specific purpose: web applications deployed with VM or docker, e.g. webODV
- Reference datasets
- Communication (chat, forum...)

### A flexible framework for versatile use cases



- SeaDataNet, T/S qualification and optimal interpolation, biology statistical control
- EMODNET-Chemistry, same for bio-geo-chem MARINET
- EMODNET-Bathymetry, DTM processing
- EMODNET-Ingestion, convert files
- Marinet2, Marine Renewable Energies prototype test analysis
- And much more, Research is innovation...

#### First use case: Workbench T+S

## First use case: SeaDataCloud T/S products



### First functions targeted

| log in with single sign on                                                               | B2ACCESS + Marine-ID                         |
|------------------------------------------------------------------------------------------|----------------------------------------------|
| integration GUI development                                                              | Javascript library                           |
| apply water column obs quality control with friendly data editor and save result,        |                                              |
| advise data centre of the regional quality control                                       | webODV                                       |
| be advised of quality control result (email of log of changes/anomalies sorted per DC)   | email                                        |
| configure DIVA interpolation                                                             |                                              |
| apply DIVA interpolation, send notification (email) when processing is completed         |                                              |
| visualize interpolation result together with original observations of other observations | Jupyter + DIVA library                       |
| extract and view profiles, time series, hovmuller out of the interpolation result        |                                              |
| publish dataset results (metadata and data), get a DOI                                   | oceanBrowser+oceanotron<br>+sextant-dataCite |

#### First sketches of how this could look

#### Authentication



# Integrated menu, sliding navigation bar,



#### Private, shareable space





#### Data Visual Qualification



## Compute, visualize results, save in private space



#### **Publication**



#### Discussion topics

- Architecture: Which is (most) appropriate and what are experiences from others?
- Workflow engine: Which options exist and experiences?
- How to handle applications/services developed by different partners? Docker? Other solutions?



http://www.odip.org