Developing a Virtual Research Environment (VRE)

Dick M.A. Schaap, MARIS, SDC Technical Coordinator
Leading concept for SeaDataCloud

- Providing a cloud platform with common services for data pre-processing, subsetting, analyses, visualizations, publishing, DOIs...
- Applying common standards and interoperability solutions for providing harmonised data and metadata
- Providing harmonised discovery and access to data output from multiple sources, such as European research and monitoring data gathering, but also from other European and international data infrastructures

sdn-userdesk@seadatanet.org – www.seadatanet.org
SDC VRE needs to:

- Facilitate collaborative and individual research:
- Combine data with subsets from other data resources, such as ingested collections
- Have a high capacity and performance for big data processing and state-of-the-art web visualisation services
- Respect privacy of users and differences in data policies. Different users, various access modes to data and data products.
- Be possible to configure virtual work spaces for individuals or groups to work on specific projects, including setting up of dedicated pools of data
SDC VRE needs to:

- Allow flexible expansion with new tools
- Facilitate building different independent workflows or virtual labs
- Allow producers to decide whether their outcomes will be shared in the public domain or stay private
- Be based and hosted on EUDAT’s infrastructure based on B2-... service platforms
Other VRE’s analysed

- EVER-EST
- NECTAR/MARVL
- NECTAR / AURIN
- BlueBridge
- LifeWatch Marine VRE
- EcoPotential VRE (related to GEO/GEOSS)
Analysis of existing VREs

- Mostly the same expectations with respect to community building, data sharing, processing and analysis tools
- Authorisation/Authentication layer both in portal layer as well as on top of service layer
- API’s for each (processing) service
- Communication and (meta)data standards are key to success
- Front end applications are various: From self created workflows, to VRE virtual labs, to dedicated user interfaces. But all run on same set of services and data.
- Need to distinguish well between typical VRE modules (communication, GUI, etc) and the fundamental architecture
SDC VRE is developed for use cases:

1. SeaDataNet Temperature and Salinity climatology generation (*Simona*)
2. EMODnet Chemistry: comparable use case for bio-geochemistry
3. SeaDataNet: Biology Quality Assessment
4. EMODnet Bathymetry: DTM processing pilot
SDC VRE Architecture – level 1
SDC VRE Architecture – level 2
SeaDataNet Temperature and Salinity climatology generation

CDI

Qualified buffer

Geospatial interpolation

Publication (catalogue, doi, visualization)
Abstract workflow T/S use case

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>log in with single sign on</td>
<td>B2ACCESS + Marine-ID</td>
</tr>
<tr>
<td>integration GUI development</td>
<td>Javascript library</td>
</tr>
<tr>
<td>data pool</td>
<td>CDI service; B2DROP for own data; Brokerage third party portals</td>
</tr>
<tr>
<td>subsetting and pre-processing data</td>
<td>ERDDAP; Octopus; …</td>
</tr>
<tr>
<td>apply water column obs quality control with friendly data editor and save result,</td>
<td>webODV</td>
</tr>
<tr>
<td>advise data centre of the regional quality control</td>
<td></td>
</tr>
<tr>
<td>be advised of quality control result (email of log of changes/anomalies sorted per DC)</td>
<td>email</td>
</tr>
<tr>
<td>configure DIVA interpolation</td>
<td></td>
</tr>
<tr>
<td>apply DIVA interpolation, send notification (email) when processing is completed</td>
<td></td>
</tr>
<tr>
<td>visualize interpolation result together with original observations of other observations</td>
<td>Jupyter + DIVA library</td>
</tr>
<tr>
<td>extract and view profiles, time series, hovmuller out of the interpolation result</td>
<td></td>
</tr>
<tr>
<td>publish dataset results (metadata and data), get a DOI</td>
<td>oceanBrowser+ERDDAP+sextant-dataCite</td>
</tr>
</tbody>
</table>
VRE components

- **Authentication**: exchange has been established between Marine-ID (SDN AAA) and B2ACCESS (EUDAT AAA)
- **Data pool**: exchange with CDI service; B2DROP for user data; brokerage for third party portals
- **VRE base**: B2HOST on CSC servers, JupyterHUB, use of Docker containers
- **Subsetting**: ERDDAP selected as tool and made available in Docker container
- **WebODV**: prototype, REST-API for integration with workflows and Jupyter notebooks *(Reiner)*
- **DIVAnd**: rewritten to Julia, Jupyter notebook and REST-API *(Alexander)*
- **Visualisation**: prototypes with OpenEarth and Mapbox on the basis of NetCDF files
- **Biology QA-QC**: specifications for workflow formulated, first test in Docker
- **Accounting**: progress on accounting VRE resources usage KPIs
- **Front end interface**: progress with dashboard design