DIVA (Data-Interpolating Variational Analysis) in a virtual research environment

Alexander Barth¹, Charles Troupin¹, Sylvain Watelet¹, and Jean-Marie Beckers¹ ¹GHER, University of Liège, Belgium

Data-Interpolating Variational Analysis

- DIVA: Data Interpolating Variational Analysis
- Objective: derive a gridded climatology from in situ observations
- The variational inverse methods aim to derive a continuous field which is:
 - close to the observations (it should not necessarily pass through all observations because observations have errors)
 - "smooth"

Jupyter and JupyterHub

- Overview of Jupyter and JupyterHub
- Jupyter is an interactive programming environement
 - computing
 - documentation
 - visualization
- JupyterHub is the multi-user variant for a remote server

💭 Jupyter		15-е	15-example-analysis (autosaved)						Logout
File	Edit	View	Insert	Cell	Kernel	Help		Trusted	Julia 1.0.2 O
B +	≫ 4	6	↑ ↓	N Run	C	▶ Code	-		

DIVAnd analysis using the sample data set

This example performs a salinity analysis using data from the Black Sea. The analysis is done for every season and year (using all data with 10-year sliding windows form the same season).

For testing purposes, let's start with a low resolution.

A slightly large test case:

- horizontal resolution of 0.1 degree for the Black Sea
- 51 depths levels
- 8 time instance
- fixed correlation length
- CPU time: 21 minutes
- CPU time increases linearly with the number of time instance.

```
In [31]: using DIVAnd
using PyPlot
using NCDatasets
using DataStructures
if VERSION >= v"0.7.0-beta.0"
using Dates
using Statistics
else
```

Bathymetry

 Reading and processing of bathymetry from different sources (EMODnet Bathymetry, GEBCO) and preparation of land-sea mask.

Observations

- Reading of different file formats:**netCDF** files and **ODV spreadsheets**
- Download data from external sources such as the World Ocean
 Database or from the Copernicus Marine
 Environment
 Monitoring Service (CMEMS) In-Situ TAC
- Check for duplicates (based on space-time distance)
- Use of the analysis to perform additional quality checks on the observations.

5/11

Optimization

- Optimising the analysis parameters (correlation lengths and noiseto-signal ratio)
- Derivation of a relative correlation length based on the topography gradients.

Error field and results

- Error field computation
- The error field determines how reliable the gridded field at a given location is
- Different algorithm to compute the error field are available
- Plot results and data.

Metadata

 Query additional metadate for a given observation based on EDMO code and local CDI id from jupyter notebook

REST API

- DIVAnd REST API is also intendent to be a multi-user API
- Main functionalities
 - Extraction of a **bathymetry** (GEBCO or possibly EMODnet Bathymetry);
 - Generation of a DIVA analysis using data from the user and/or extracted from ODV;
 - Generation of a XML description for the Sextant catalogue (in process).
- The essential GET and POST calls will be implement in a layer around DIVAnd.

nnel=fs&q=julia+1.0+run+garbace+collector	🔹 👔 💷 😭 🔍 🕄 🔍 120% 🛛 🗤 😭							
URL of the observaly to force								
Name of the variable								
Bounding box (east, south, w degrees)								
Comma separated list of depth levels (meters)	0,20,50							
Correlation length in zonal and meridional direction (meters)	100000,100000							
Error voariance of observation (relative to the error variance of the background field)	1							
Resolution in zonal and meridional direction (in degrees)	0.5,0.5							
Start and end year	1900,2018							
Month of every season	1,2,3 4,5,6							
	7,8,9 10,11,12							
URL of the bathymetry file	sampledata:gebco_30sec							

Metadata ►

Download results

Conclusions and outlook

- DIVAnd can be used in a jupterhub-based work-flow
- Container images will all necessary software have been build
- Support of the NetCDF ODV format for more efficient data exchange
- REST API of DIVAnd is currently build
- Ontop of the REST API we are building a web user interface