
Integration of iRODS data workflows 

in an extensible HTTP REST API framework

iRODS UGM 2019

Mattia D’Antonio

m.dantonio@cineca.it

26-27 th June 2019, Utrecht, The Netherlands

mailto:m.dantonio@cineca.it


Key points

● CINECA is involved in many European projects and National initiatives

● My group in particular is committed in Data Management

● Every project has is own very specific requirements but some common needs

can be identified

● We are building a common layer among all these projects

● iRODS is the base data technology adopted onto these projects

2



Common projects requirements

3



EUDAT CDI

 EUDAT Collaborative Data Infrastructure (CDI) is a network of nodes that 

provide a range of services for data upload, retrieval, identification, replication. 

The nodes are essentially data centers

 EUDAT supports several services but I will focus on two core services:

 B2SAFE – data and policy management service build over iRODS

 B2STAGE – HTTP API interface for data transfer build over B2SAFE

4



B2STAGE

● HTTP RESTful interface offering functionalities for data transfer between 

EUDAT resources (B2SAFE =~ iRODS) and external computational facilities

5

HTTP API 

Flask server

Nginx proxy

Session 

database



SeaDataCloud

● Pan-European infrastructure for ocean & marine data management

● Data from sensors, ships, platforms are stored in a centralized repository to 

be standardized, validated, indexed

6



Execution of data 

workflows (as docker

containers orchestrated 

through Rancher)

SDC CDI HTTP API

Ingestion and ordering 

APIs are built on 

B2STAGE by adding 

custom endpoints

7

PostgreSQL

Nginx proxy

HTTP APIs Rancher

Private Docker Hub

Quality checks 

Celery workers

RabbitMQ + MongoDB

Heavy data management 

operations = 

asynchronous task (with 

Celery)



Genomic Repository Initiative

National initiative for the implementation of a Genomic Repository, 

in collaboration with:

○ Telethon Foundation

■ a non-profit organization for genetic diseases research

○ SIGU

■ Italian Society for Human Genomics

8



Genomic Repository

A platform on which a researcher can:

● Deposit sequencing data

● Manage metadata and annotations

● Create correlations between datasets

● Perform HPC analyses on archived data 

to produce more information

9



Common requirements among the 3 use cases

● Data storing

● Metadata management 

● Access via REST API

● Execution of asynchronous operations

● Access from HPC cluster or other workflow manager

We created a common framework (named RAPyDO) to share 

solutions among these projects

10



RAPyDO

● RAPyDO: Rest Apis with Python on Docker

● Implements a set of HTTP REST APIs (integrated with several

services) to support users of different communities to implement

data workflows and services

● APIs include the integration with iRODS

● Built as a wrapper of docker-compose for easy deployment on 

every platform

● RAPyDO is an extensible and modular framework used as a 

base for the projects
11



Architecture stack

12

Nginx proxy

Flask server (HTTP APIs)

Core endpoints

Resources

RAPyDO controller

Docker-compose

Docker

projects endpoints

Custom projects resources
Session database



iRODS integration

● HTTP APIs are written in Python by using the Flask framework

● A wrapper client based on the python-irods-client implements common 

operations

● The client is used from both API endpoints and celery tasks to easily

interact with iRODS

def get(self, collection):

if self.irods.exists(collection):

return self.irods.list(

collection, recursive=True, acl=True)

13



Implemented methods

● Methods mapped on icommands

○ e.g. list(), mkdir(), put(), get(), move(), remove(), set_permissions(), ticket(), etc

○ mapped on ils, imkdir, iput, iget, imv, irm, ichmod, iticket, etc

● Simple utilities methods without a corresponding icommand

○ e.g. exists(), is_collection(), is_dataobject() and others

● Method to perform more complex operations, e.g. 

○ Methods to read and write file content as strings, chunks or Flask data streams

14



Authentication

● HTTP APIs support all iRODS authentication protocols:

○ Native credentials

○ Pluggable authentication modules (PAM)

○ Grid Security Infrastructure (GSI)

Native credentials are natively supported by python-irods-client

15



PAM and GSI modules

16

We contributed to the PRC by developing authentication modules for:

● Grid Security Infrastructure (GSI)

○ Merged on main branch on Jan 2017

○ Status: completed

● Pluggable authentication modules (PAM)

○ Merged on main branch on Dec 2018

○ Status: partially completed, some issues to be fixed

■ e.g. #156 PAM authentication and irods_environment.json



Asynchronous operations

● Some operations are (quite) fast and can be execute synchronously

● To be able to execute data intensive and complex workflows we also 

introduced an asynchronous layer

● Implemented on Celery, a task management queue based on distributed 

message passing.

17



High Performance Computing

● Many projects need to store data for archiving purpose to be 

treated as read-only resources (e.g. for data search / retrieval)

● Other projects use archived data as inputs for analyes

● The use of iRODS ensure data to be easily shared beetwen all

the components

● The use of ACL ensure data security by preserving access rights

18



Complete workflow

19



Dockerized environments

● HPC clusters are not always the solution

● More flexibility can be achieved through docker

● Docker containers can be orchestrated by using services like Rancher

● We implemented a Rancher client integrated into RAPyDO

20



● Stability and scalability, also for big data projects

● Accessibility from different locations (REST APIs, HPC cluster)

● Security and access policies (preserved regardless the access method)

● Many authentication methods (some of our projects are certificates-based, 

other are defined on LDAP servers -> GSI, PAM)

● Data replication

● Rules

iRODS main benefits

21



Don’t reinvent, perfect it

● iRODS is the perfect technology as base for many data-oriented projects

● Projects need higher-level services to be built over it

● Common requirements can be translate in common solutions

○ Don’t reinvent the wheel…

● Risk of fossilization on obsolete solutions

○ Every new project can start from previous solutions

○ … and perfect it 

Conclusions

22



Thank you for your attention

Mattia D’Antonio – m.dantonio@cineca.it

https://github.com/rapydo 24


