Generating ocean climatologies from in situ observations

Alexander Barth, Charles Troupin, Sylvain Watelet, Aida Alvera-Azcárate and Jean-Marie Beckers

Collect once, Use many times And create products with DIVA

Conclusions

- 1. `DIVA` is a software tool written in Fortran
- 2. `DIVAnd` is a software tool written in Julia
- 3. Both are designed for the spatial interpolation of data

Methodology: spatial interpolation

Gridding problem

Constraints

- 1. Closer observations have a stronger influence
- 2. Different confidence in some measurements
- 3. **Physical** barriers and currents
- 4. Deal with up to millions of points5. Many sources of errors on observations6. Need an associated error field

Data-Interpolating Variational Analysis https://github.com/gher-ulg/DIVA

DOI 10.5281/zenodo.1407062

DIVAnd

n-dimensional generalisation of DIVA https://github.com/gher-ulg/DIVAnd.jl

DOI 10.5281/zenodo.1466985

DIVAnd

https://www.geosci-model-dev.net/7/225/2014/

Geosci. Model Dev., 7, 225–241, 2014 www.geosci-model-dev.net/7/225/2014/ doi:10.5194/gmd-7-225-2014 © Author(s) 2014. CC Attribution 3.0 License.

divand-1.0: *n*-dimensional variational data analysis for ocean observations

A. Barth^{1,*}, J.-M. Beckers¹, C. Troupin², A. Alvera-Azcárate¹, and L. Vandenbulcke^{3,4}

Correspondence to: A. Barth (a.barth@ulg.ac.be)

¹GHER, University of Liège, Liège, Belgium

²IMEDEA, Esporles, Illes Balears, Spain

³seamod.ro/Jailoo srl, Sat Valeni, Com. Salatrucu, Jud. Arges, Romania

⁴CIIMAR, University of Porto, Porto, Portugal

^{*} Invited contribution by A. Barth, recipient of the EGU Arne Richter Award for Outstanding Young Scientists 2010.

How to use it?

Jupyter notebooks as a guideline for the climatologies

https://github.com/gher-ulg/Diva-Workshops

Fortran - MATLAB - Julia...

Creation: 2012

1.0.0 released: Aug 9, 2018

Simplicity of Python + speed of C or Fortran

http://julialang.org/

https://github.com/JuliaLang/julia

Who is Julia?

Julia Child (1912-2004)

By Lynn Gilbert - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=51678880

Why did we chose Julia?

Source: http://daftpunk.wikia.com, No copyright infringement is intended

Better...

Multiple dispatch Math-friendly syntax Unicode support: π, η, ∫∈α

Faster

Just-in-time (JIT) compiled Parallelism

```
function fib(n::Int)
  f=Vector{Int}(undef, n+1)
  f[1]=f[2]=1;
  for i=3:n+1
     f[i]=f[i-1]+f[i-2]
  end
  return f
end
ff = @time fib(400000000);
1.158971 seconds (18.52 k allocations: 2.981 GiB, 0.84% gc time)
```

Stronger

Metaprogramming:

Julia programs can read, analyse, generate other Julia programs

"Easy" interfacing: R, Python, ...

```
@pyimport numpy.random as nr
nr.rand(3,4)
```

Harder

Learning a new and evolving language Transition from 0.6 to 1.0

DIVAnd in the VRE

In short...

- 1. Ingest data from webODV (netCDF)
- 2. Set the analysis parameters
- 3. Apply DIVAnd interpolation
- 4. Export the results in a new netCDF
- 5. Visualise using Deltares toolbox

Implementation

- 1. Julia using HTTP and JSON modules
- 2. Deployment as a Docker container

Applications

SeaDataCloud climatologies

https://www.seadatanet.org/Products/Climatologies

EMODnet Chemistry gridded fields

http://www.emodnet-chemistry.eu/products

EMODnet Biology products

http://www.emodnet-biology.eu/data-products

#Innovations

Synthetic velocity field, red arrow = measurement

Adding the influence of the coast

Low horizontal divergence of currents

Including Coriolis force and geostrophically balanced mean flow

Test areas: Ibiza Channel, Gulf of Trieste

Neural network

Neural network

From univariate to multivariate...

Principle:

Use other co-variables to improve the interpolation
Use neural network to derive the relationships between the variables

Application: zooplankton count in the Baltic Sea

Covariables:

- Dissolved oxygen → EMODnet Chemistry
- Salinity → SeaDataCloud
- Temperature → SeaDataCloud
- Chlorophyll concentration → MODIS-Aqua from NASA
- Bathymetry → EMODnet Bathymetry, GEBCO
- Distance from coast → GSFC, NASA

Application: zooplankton count in the Baltic Sea

Conclusions

- 1. `DIVA` is a software tool written in Fortran
- 2. `DIVAnd` is a software tool written in Julia
- 3. Both are designed for the spatial interpolation of data
- 4. We are open and willing to improve and adapt the code for different data types

Thanks for your attention

(and use `DIVA{nd}` many times)