

Development of online Biology Data QC

Simon Claus

VLIZ- Flanders Marine Institute

 Developing a Virtual Research Environment with a packaged set of advanced downstream services for users: Services will include:

- MySeaDataCloud
- Sub-setting
- Online version of the Ocean Data View (ODV) software
- Online version of the Data-Interpolating Variational Analysis software High level visualisation
- Upgraded Oceanotron
- SOS viewing services
- Online Biology Data Quality control

WP10.2.4: development of online Biology Data quality checks (QC)

This task will develop online services and tools to analyse the quality and completeness of biology data. Records will be reviewed through a series of QC steps dealing with the

- 1) data format
- 2) completeness and validity of information
- 3) quality and detail of the used taxonomy and
- 4) geographic indications and
- 5) whether or not the record is a (possible) outlier.

SeaDataNet

WP10.2.4: development of online Biology Data quality checks (QC)

The QC procedures will be developed as online web services that can be used by potential data providers and researchers to:

Assess the quality and completeness of their own data prior to 1) use or 2) submission.

- Large-scale European research infrastructure
- Virtual laboratory for study of biodiversity
- Integrates observatories, data bases, web services and modelling tools distributed throughout Europe.
- Keywords: E-science, web services, data services, ICT infrastructure, HPC, GRID, BIG data, workflow
- Goals: increase data generation, real time monitoring data, biosensors

sdn-userdesk@seadatanet.org - www.seadatanet.org

PAN-EUROPEAN INFRASTRUCTURE FOR OCEAN & MARINE DATA MANAGEMENT

Example: taxonomic qc:

- 1. Define relevant taxonomic qc functions:
 - get the AphiaID for your taxon
 - check the spelling of your taxa
 - get the full classification for your taxa
 - resolve your unaccepted names to accepted ones
 - get all synonyms for a taxon
 - fuzzy/near match your species list
 - resolve a common name/vernacular to a scientific name...
- 2. Open webservice: platform-independent SOAP/WSDL standard.
- 3. Implementations in SDC tools developed for submitting (MIKADO?) or using data

Outlier anlysis on dataset level

- Analysis on dataset level
- Possible location outlier(s)
- Methodology based on centroid calculations and assuming normal distribution => not applicable for strong asymetric datasets...
- Communication with provider on results

Vandepitte et al. (2015). Fishing for data and sorting the catch [...]. Database. DOI:

10.1093/database/bau125

Dataset: "ICES Biological Community" (DOME)

Also identified as incorrect in record-level check of lat-lon

(=land) Not identified through record-level check of lat-lon (=sea), but seen as potential outlier through geographic outlier check

Provider communication:

- Antarctic locations are incorrect (data error)
- Northern locations are correct (sampling bias)

Outlier analysis based within the available distribution records of a species - Environmental outliers

- => Check for outliers within the available distribution records of a species
- => Geography, depth, sea surface salinity (SSS), sea surface temperature (SST)

Verruca stroemia (Crustacea: Cirripedia)

Vandepitte et al. (2015)

WP10.2.4: development of online Biology Data quality checks (QC)

D10.9: Specification of Biology Data QC online and development plan (M12)

- 1. Analyse and select relevant biological qc steps (OBIS, EurOBIS, WoRMS, ICES...)
- 2. Analyse how these services can be integrated in SDC and made available for SDC tools

D10.10: Phase 1 of Biology Data QC online operational (M24)

D10.11: Phase 2 of Biology Data QC online operational (M36)

D10.12: Phase 3 of Biology Data QC online operational (M42)

Technical:

- 18 quality control steps, on individual record level
- 10 outlier checks, on dataset or species level
- Each QC step = yes (1)/no (0) question
- Creation of a bit-sequence (2^(x-1))
 - => stored as an integer value for the QC
 - => unique value for each possible combination

QC	Valu	Bit-	
step	е	seq.	
1	1	2 ⁽¹⁻¹⁾	= 1
2	1	2 ⁽²⁻¹⁾	= 2
3	0		= 0
4	1	2(4-1)	= 8
5	0		= 0
		TOTAL	= 11

QC	Valu	Bit-	
step	е	seq.	
1	1	2 ⁽¹⁻¹⁾	= 1
2	1	2(2-1)	= 2
3	1	2(3-1)	= 4
4	1	2(4-1)	= 8
5	1	2 ⁽⁵⁻¹⁾	= 16
		TOTAL	= 31

VRE

