MONITORING OF THE PAN-EUROPEAN MARINE DATA MANAGEMENT INFRASTRUCTURE IN THE FRAMEWORK OF EU/FP7 SeaDataNet 2 PROJECT

LYKIARDOPOULOS, A.1,2, BALOPOULOU, S. 1, IONA, A. 1, VAVILIS, P.2, PANTAZI M.3

1HELLENIC NATIONAL OCEANOGRAPHIC DATA CENTRE, INSTITUTE OF OCEANOGRAPHY, HELLENIC CENTRE FOR MARINE RESEARCH
2NETWORK OPERATING CENTER, HELLENIC CENTRE FOR MARINE RESEARCH
3INSTITUTE OF MARINE BIOLOGICAL RESOURCES AND INLAND WATERS, HELLENIC CENTRE FOR MARINE RESEARCH
What is SeaDataNet

- SeaDataNet (www.seadatanet.org) is the pan-European infrastructure for managing, cataloguing, and providing harmonized access to ocean and marine environmental data sets and products (physical oceanography, chemistry, geology, geophysics, bathymetry and biology) that are collected by research vessels, satellite and in-situ platforms of various marine observing systems and developed, managed and operated by distributed National Oceanographic Data Centres (NODCs) and other marine data centres in countries around the European seas, with co-funding from the European Commission (EC).

- SeaDataNet is now the leading marine data management network in Europe that contributes to build research excellence. The initiative for developing such an infrastructure:
 - Has started as Sea-Search project under FP5 (2002 - 2005) with a focus on metadata.
 - Was succeeded in 2006 with the five-year SeaDataNet project under FP6 with a wider focus including harmonized access to data.
PARTNERSHIP

- Started since 90’s, MAST Programme
- Today, 59 partners from 35 countries
 - 68 connected data centers and national focal points
- 3 International Bodies: IOC, ICES and EU-JRC
- HCMR-HNODC is the coordinator of the Networking Activities
MAIN PRINCIPLES

- SeaDataNet is a **standardized system** for managing the large and diverse data sets collected by the oceanographic fleets and the automatic observation systems.

- It is based on a **semi-distributed system** that incorporates NODCs/partners in a unique virtual data management system and enhances the existing network in order to provide and deliver integrated data, metadata and products of standardized quality on-line through a unique portal.

- SeaDataNet 2 objective is to upgrade the present infrastructure into an operationally robust and state-of-the-art Pan-European infrastructure for providing up-to-date and high quality access to ocean and marine metadata, data and data products.
SEADataNet’s Infrastructure Components
SDN Network Monitoring System

- **Scope:** Upgrade SeaDataNet’s infrastructure into an operationally robust and state-of-the-art system.

Network units need to be constantly monitored for slow or failing components and notifications are sent to the network administrator and the local administrators, for example by email, in case of outages. It is a prerequisite in case of signing a Service Level Agreement (SLA).

Solution: HCMR has implemented an SDN Monitoring System that monitors and reports the availability (up and running) of the SDN services and is based on Nagios software.
Benefits of SDN Network Monitoring

- Real time monitoring & alerting.
- Messaging system: a “live” component acting as notification tool for the service administrators to improve the overall availability of the SDN infrastructure.
- Calculation of the overall availability of the SDN provided services.
- Identification and update of critical units is very important in distributed systems such as SDN to improve their robustness.
MONITORED SERVICES

The SeaDataNet components that are monitored are divided into two groups of services:

- **The Core services**, which are centrally-based provided services:
 - Common Data Index (CDI) portal
 - European Directory of Marine Organisations (EDMO) portal
 - European Directory of the initial Ocean-observing Systems (EDIOS) portal
 - European Directory of Marine Environmental Research Projects (EDMERP) portal
 - European Directory of Marine Environmental Research Projects (EDMED) portal
 - Cruise Summary Reports (CSR) portal
 - SeaDataNet homepage
 - SDN Central Authentication Service
 - Common Vocabularies Web Services
 - Request Status Manager (RSM)

- **The Local services**, which are services provided by the partners' locally situated infrastructures:
 - 83 Download Managers supporting SeaDataNet, GeoSeas, UBSS and EMODNet-Chemistry-Bathymetry projects
SDN MONITORING PORTAL

- A user-friendly monitoring web portal is developed in order to give access to service administrators (members only) of the SeaDataNet components to view detailed logging information of their own service(s) outages (DOWN status) and report their unit(s) availability (UP status).

MONITORING NETWORK – MAP VISUALIZATION (NagVis plugin)
SERVICE AVAILABILITY INDEX (UPTIME)

- % Uptime for each of the services individually on a defined period of time.

Monitor Network
- About the portal
- Document Library
- View all services on map

Current State
- Services
- Service Groups

State Reports
- Service(s) Availability Index
 - State Breakdowns (Availability)
 - State History (Trends)

Alerts Reports
- Latest Critical Events
- Alerts Summary
- Alerts Histograms

Add other service(s)
- Add your Service

Account
- Ask for a new password
- Change your personal info
- Sign-out user sb30fadv1
DOWNTIME EVENTS (ALERTS)

- Reports services outages on a user defined period of time. (Service Name, When started, When finished if finished during the defined period, Duration and Information about the cause of the downtime.)

![Alerts Summary](image)

<table>
<thead>
<tr>
<th>Service</th>
<th>Date Event Started</th>
<th>Date Event Ended</th>
<th>Status Information</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMG Download</td>
<td>2014-03-06</td>
<td>2014-03-07</td>
<td>CRITICAL - Socket timeout after 10 seconds</td>
<td>02:19:55</td>
</tr>
<tr>
<td>Manager</td>
<td>21:23:23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMEA Download</td>
<td>2014-03-05</td>
<td>2014-03-06</td>
<td>CRITICAL - Socket timeout after 10 seconds</td>
<td>02:30:53</td>
</tr>
<tr>
<td>Manager</td>
<td>10:24:10</td>
<td>12:55:03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NGU Download</td>
<td>2014-03-05</td>
<td>2014-03-06</td>
<td>No route to host</td>
<td></td>
</tr>
<tr>
<td>Manager</td>
<td>02:00:57</td>
<td>08:01:02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGS Download</td>
<td>2014-03-04</td>
<td></td>
<td>CRITICAL - Socket timeout after 10 seconds</td>
<td></td>
</tr>
<tr>
<td>Manager</td>
<td>21:22:56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGSW Download</td>
<td>2014-03-04</td>
<td>2014-03-06</td>
<td>No route to host</td>
<td></td>
</tr>
<tr>
<td>Manager</td>
<td>15:00:08</td>
<td>00:46:07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSTM Download</td>
<td>2014-03-04</td>
<td>2014-03-06</td>
<td>CRITICAL - Socket timeout after 10 seconds</td>
<td></td>
</tr>
<tr>
<td>Manager</td>
<td>11:05:29</td>
<td>13:45:22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYOC Download</td>
<td>2014-03-04</td>
<td>2014-03-04</td>
<td>HTTP CRITICAL: HTTP/1.1 403 Forbidden - string 'OK' not found on</td>
<td></td>
</tr>
<tr>
<td>Manager</td>
<td>10:54:29</td>
<td>11:34:38</td>
<td>http://www.oceangraphy.ucy.ac.cy:80/dn/index.html - 1002 bytes in 0.229 second response time</td>
<td></td>
</tr>
</tbody>
</table>
GLOBAL AVAILABILITY INDICATOR

- SDN network is an integrated system of separate services. A critical event (service down) in a system node is possible to isolate other network nodes leading to loss of the availability (uptime) of larger network parts or service types.

Global Availability Indicator Definition: The percentage of time in a specific period that a system composed of several services is up and running.
“Data Access Services” Architecture Schema
GLOBAL AVAILABILITY: METHOD ANALYSIS

The method followed to calculate the Global Availability Index in case of SeaDataNet can be described as follows:

- Division of the whole system in operational modules, single services whose uptime is measured by the monitoring portal.
- Definition of dependencies between these modules to formulate the influence of each module’s availability (uptime) against the whole system.
- Definition of a weight coefficient for each module indicating its involvement in the total system productivity).
“DATA ACCESS SERVICES” (HIERARCHICAL CHAIN)
“Data Access Services”: Mathematical Formula

- The seadatanet.org, CAS authentication and Request Status Manager services play a critical role to the overall data availability of the network.
 - If they are not functioning (OFF) then the availability is NULL.
 - When seadatanet.org, CAS authentication and Request Status Manager are actually functioning properly (ON) then the Availability is calculated based on the equation below that consists of the following factors:

 \[\text{Availability} = \begin{cases}
 0, & \text{seadatanet.org/CAS authentication/Request Status Manager OFF} \\
 \sum_{j=0}^{3} s_j \sum_{i=0}^{n} w_i s_i, & \text{seadatanet.org/CAS authentication/Request Status Manager ON}
\end{cases} \]

 - \(s_j \text{ value} \): the uptime of each of the above three services
 - \(w_i \text{ evaluation coefficient} \): estimated delivered CDIs for each local service (Download Manager),
 - \(s_i \text{ value} \): uptime of each local service.
“DATA ACCESS SERVICES”: COEFFICIENT W

- The coefficient w is the weight of each node and describes significance of each node.
- The **sum of w of each level must be 1**, which is the maximum value of w and describes the full service availability.
- In the forth level, the coefficients w are the **monthly analysis of the statistics of each Download Manager (DM)**. Coefficient $w=ai$, where ai is the percentage of delivered CDIs, which are divided by 100.
FALSE ALARMS DETECTION SYSTEM

- **False Alarms:** The Monitoring System gives status CRITICAL (downtime) to services that are not in reality DOWN (e.g. the monitoring system is DOWN).

- **False Alarms Detection System scenario:** To cross check the critical events provided by the two Monitoring Systems (installed in different premises) in order to detect and avoid false alarms.

- **Prompts:**
 - Establishment of a more reliable SDN Monitoring system,
 - No false notifications to the partners,
 - More reliable statistics.

- **Three solutions:** Two add-ons by Nagios (**Nagira - Nagios RESTful API & status-json**) and one own development => Implementation of the most suitable case.
FUTURE PLANS

- In the framework of another project the network performance will be monitored, also.

Network Performance Monitoring consists of measuring, modeling, planning, and optimizing networks to ensure that they carry traffic with the speed, reliability, and capacity that is appropriate for the nature of the application and the cost constraints of the organization.

- Performance monitoring is vital for service networks based on heavy consumption of computer and network resources, such as Web Processing Services (WPS).
THANK YOU!

Visit the seadatanet portal at: http://www.seadatanet.org